Non-Bayesian social learning

نویسندگان

  • Ali Jadbabaie
  • Pooya Molavi
  • Alvaro Sandroni
  • Alireza Tahbaz-Salehi
چکیده

We develop a dynamic model of opinion formation in social networks when the information required for learning a payoff-relevant parameter may not be at the disposal of any single agent. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully Bayesian manner, agents use a simple updating rule which linearly combines their personal experience and the views of their neighbors (even though the neighbors’ views may be quite inaccurate). This non-Bayesian learning rule is motivated by the formidable complexity required to fully implement Bayesian updating in networks. We show that, as long as individuals take their personal signals into account in a Bayesian way, repeated interactions lead them to successfully aggregate information and learn the true underlying state of the world. This result holds in spite of the apparent naı̈veté of agents’ updating rule, the agents’ need for information from sources the existence of which they may not be aware of, the possibility that the most persuasive agents in the network are precisely those least informed and with worst prior views, and the assumption that no agent can tell whether her own views or those of her neighbors are more accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opinion Dynamics and Learning in Social Networks

We provide an overview of recent research on belief and opinion dynamics in social networks. We discuss both Bayesian and non-Bayesian models of social learning and focus on the implications of the form of learning (e.g., Bayesian vs. non-Bayesian), the sources of information (e.g., observation vs. communication), and the structure of social networks in which individuals are situated on three k...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

Non-Cooperativity in Bayesian Social Learning

We describe a Bayesian model for social learning of a random variable in which agents might observe each other over a directed network. The outcomes produced are compared to those from a model in which observations occur randomly over a complete graph. In both cases we observe a nontrivial level of observation which maximizes learning, though individuals have strong incentive to defect from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Games and Economic Behavior

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2012